Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0043320090320071019
Archives of Pharmacal Research
2009 Volume.32 No. 7 p.1019 ~ p.1028
Micromeritics and Release Behaviours of Cellulose Acetate Butyrate Microspheres Containing Theophylline Prepared by Emulsion Solvent Evaporation and Emulsion Non-solvent Addition Method
Nokhodchi Ali

Atapour Fatemeh
Jelvehgari Mitra
Abstract
The present research work compares the effect of microsphere preparation technique on micromeritics and release behaviors of theophylline microspheres. Microspheres were prepared by oil-in oil (O1/O2) emulsion solvent evaporation method (ESE) using different ratios of anhydrous theophylline to cellulose acetate butyrate (CAB). Cyclohexane was used as non-solvent to modify the ESE technique (MESE method) and the effect of non-solvent volume on properties of microspheres was investigated. The obtained microspheres were analyzed in terms of drug content, particle size and encapsulation efficiency. The morphology of microsphere was studied using scanning electron microscope. The solid state of microspheres, heophylline and CAB were investigated using X-ray, FT-IR and DSC. The drug content of microspheres prepared by MESE method was significantly lower (15.54% ¡¾ 0.46) than microspheres prepared by ESE method (41.08 ¡¾ 0.40%). The results showed that as the amount of cyclohexane was increased from 2 mL to 6 mL the drug content of microspheres was increased from 15.54% to 28.71%. Higher encapsulation efficiencies were obtained for microspheres prepared by ESE method (95.87%) in comparison with MESE method (64.71%). Mean particle size of microsphere prepared by ESE method was not remarkably affected by drug to polymer ratio, whereas in MSES method when the volume of cyclohexane was increased the mean particle size of microsphere was significantly decreased. The ratio of drug to polymer significantly changed the rate of drug release from microspheres and the highest drug release was obtained for the microsphere with high drug to polymer ratio. The amount of cyclohexane did not significantly change the drug release. Although, x-ray showed a small change in crystallinity of theophylline in microspheres, DSC results proved that theophylline in microspheres is in amorphous state. No major chemical interaction between the drug and polymer was reported during the encapsulation process.
KEYWORD
Encapsulation methods, Cellulose acetate butyrate, Non-solvent, Microspheres, Drug release, Loading efficiency
FullTexts / Linksout information
Listed journal information
SCI(E) MEDLINE ÇмúÁøÈïÀç´Ü(KCI)